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We report a measurement of the di�erential cross section for W boson production as a function of
its transverse momentum in proton-antiproton collisions at

p
s = 1.8 TeV. The data were collected

by the D� experiment at the Fermilab Tevatron Collider during 1994{1995 and correspond to an
integrated luminosity of 85 pb�1. The results are in good agreement with quantum chromodynamics
over the entire range of transverse momentum.
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Measurement of the di�erential cross section for W
boson production provides an important test of our un-
derstanding of quantum chromodynamics (QCD). Its im-
plications range from impact on the precision determina-
tion of the W boson mass to background estimates for
new physics phenomena. Data from the production of
W and Z bosons at hadron colliders also provide bounds
on parametrizations used to describe the nonperturbative
regime of QCD processes.
The production of W bosons at the Fermilab Tevatron

proton-antiproton collider proceeds predominantly via
quark-antiquark annihilation. In the QCD description of
the production mechanism, the W boson acquires trans-
verse momentum by recoiling against additional gluons or
quarks, which at �rst order originate from the processes
qq0 ! Wg and qg !Wq0. When the transverse momen-
tum (pW

T
) and the invariant mass (MW ) of the W boson

are of the same order, the production rate can be calcu-
lated perturbatively order by order in the strong coupling
constant �s [1]. For p

W

T
�MW , the calculation is domi-

nated by large logarithms � �s ln(MW =pW
T
)2, which are

related to the presence of soft and collinear gluon radia-
tion. Therefore, at su�ciently small pW

T
, �xed-order per-

turbation theory breaks down and the logarithms must
be resummed [2]. The resummation can be carried out
in transverse momentum (pT ) space [3] or in impact pa-
rameter (b) space [4] via a Fourier transform. Di�erences
between the two formalisms are discussed in Ref. [5].
Although resummation extends the perturbative cal-

culation to lower values of pW
T
, a more fundamental bar-

rier is encountered when pW
T

approaches �QCD, the scale
characterizing QCD processes. The strong coupling con-
stant �s becomes large and the perturbative calculation
is no longer reliable. The problem is circumvented by us-
ing a cuto� value and by introducing an additional func-
tion that parametrizes the nonperturbative e�ects [6,7].
The speci�c form of this function and the particular
choices for the nonperturbative parameters have to be
adjusted to give the best possible description of the data.
We report a new measurement [8] of the inclusive dif-

ferential cross section forW boson production in the elec-
tron channel as a function of transverse momentum. We
use 85 pb�1 of data recorded with the D� detector during
the 1994{1995 run of the Fermilab Tevatron pp collider.
We have a ten-fold increase in the number of W boson
candidates with respect to our previous measurement [9],
reecting the larger data set and an increase in electron
rapidity coverage. An improved electron identi�cation
technique reduces the background for central rapidities
and high pW

T
by a factor of �ve compared to Ref. [9],

and keeps the background contamination at a low level
for large rapidities. Furthermore, corrections for detector
resolution now enable direct comparison with theory.
Electrons are detected in an electromagnetic (EM)

calorimeter which has a fractional energy resolution of
� 15%=

p
E(GeV) and a segmentation of �� � �� =

0:1 � 0:1 in pseudorapidity (�) and azimuth (�). The
D� detector and the methods used to select W ! e�
events are discussed in detail in Refs. [10] and [11] re-
spectively. Below, we briey describe the main selection
requirements.
Electron candidates are identi�ed as isolated clusters

of energy in the EM calorimeter that have a matching
track in one of the drift chambers. In event reconstruc-
tion, electron identi�cation is based on a likelihood tech-
nique [12]. The electron likelihood is constructed from:
(i) a �2 based on a covariance matrix that determines the
consistency of the cluster in the calorimeter with the ex-
pected shape of an electron shower, (ii) the \electromag-
netic energy fraction," de�ned as the ratio of the portion
of the energy of the cluster found in the EM calorime-
ter to its total energy, (iii) a measure of the consistency
between the track position and the centroid of the clus-
ter, and (iv) the ionization energy loss along the track.
To a good approximation, these four variables are inde-
pendent of each other. Electron candidates are accepted
either in the central region, j�detj � 1:1, or in the forward
region, 1:5 � j�detj � 2:5, where �det refers to the value
of � obtained by assuming that the particle originates
from the geometrical center of the D� detector.
Neutrinos do not interact in the detector and thereby

create an apparent momentum imbalance. For each
event, the missing transverse energy (E/

T
), obtained from

the vectorial sum of the transverse energy of all calorime-
ter cells, is attributed to the neutrino.
Candidates for the W ! e� event sample are required

to have an electron with ET > 25 GeV and E/
T
> 25 GeV.

Additionally, events containing a second electron are re-
jected if the dielectron invariant massMee is close to that
of the Z boson (75 GeV=c2 < Mee < 105 GeV=c2). A
total of 50,486 events passes this selection.
A major source of background stems from jets and di-

rect photons passing our electron selection criteria. A
multijet event can be misinterpreted as a W ! e� decay
if one of the jets mimics an electron and there is suf-
�cient mismeasurement of energy to produce signi�cant
E/
T
. The fraction of background events due to multijet,

b quark, and direct-photon sources, also referred to as
QCD background, is calculated by studying the electron
likelihood in both a background sample and a signal sam-
ple, as described in Ref. [13]. The total QCD background
in the data sample is 2%; its shape is determined by re-
peating the background calculation for each pW

T
bin.

Other sources of background in the W ! e� sam-
ple are W ! ��, Z ! ee, and t�t events. The process
W ! �� ! e��� is indistinguishable from the signal on
an event-by-event basis. To estimate this background,
W ! �� events are generated with the same W boson
production and decay model used in the calculation of
the acceptance (see below), and the � leptons are forced
to decay to electrons. Since the three-body decay of the
� leads to a very soft electron pT spectrum compared to
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that from W ! e� events, the kinematic requirements
keep this background to a moderate 2%. This is ac-
counted for by making a correction to the acceptance
for W bosons [13]. A Z ! ee event can be misidenti-
�ed when one of the two electrons escapes detection or is
poorly reconstructed in the detector and thereby simu-
lates the presence of a neutrino. This background (0:5%)
is estimated by applying the selection criteria to a sample
of Monte Carlo Z ! ee events that were generated with
isajet [14], processed through a geant-based [15] simu-
lation of the D� detector, and overlaid with events from
random p�p crossings that follow the luminosity pro�le of
the data. The background from top quarks decaying to
W bosons (0:1%) is estimated using herwig [16] Monte
Carlo t�t events and geant detector simulation.
Trigger and selection e�ciencies are determined using

Z ! ee data in which one of the electrons satis�es the
trigger and selection criteria, and the second electron pro-
vides an unbiased sample to measure the e�ciencies. Due
to the limited statistics of the Z ! ee data sample, we
determine the shape of the e�ciency as a function of
transverse momentum using Z ! ee events generated
with herwig, processed with a geant detector simula-
tion, and overlaid with randomly selected minimum-bias
pp collisions. This procedure models the e�ects of the
underlying event and of jet activity on the selection of
electrons. The e�ciency for both the electron identi�ca-
tion and the trigger requirements is (55:3� 2:2)%.
The data are corrected for acceptance and detector res-

olution as determined from a Monte Carlo program orig-
inally developed for measuring the mass of the W bo-
son [17]. The method is described in detail in Ref. [18].
The program �rst generates W bosons with � and pW

T

values chosen randomly from a double di�erential cross
section d2�=dpW

T
d� provided as input. The response of

the detector and the e�ects of geometric and kinematic
selection criteria are introduced at the next stage. For
the present analysis, the input d2�=dpW

T
d� distribution is

obtained using the iterative unfolding method described
in Ref. [19]. The uncertainty due to this input distribu-
tion is evaluated by using an initial distribution uniform
in pW

T
and �. The systematic smearing uncertainty is de-

termined by varying the detector resolution parameters
by �1 standard deviation from the nominal values. The
total acceptance for W ! e� events is (47:6� 0:3)%.
The results for d�(W ! e�)=dpW

T
, corrected for de-

tector acceptance and resolution, are shown in Table I
and plotted in Fig. 1, where the data are compared to
the combined QCD perturbative and resummed calcula-
tion in b-space, computed with published values of the
nonperturbative parameters [6]. The error bars on the
data points correspond to their statistical uncertainties.
The fractional systematic uncertainty is shown as a band
in the lower portion of the plot. The largest contribu-
tions to the systematic error are from uncertainties in
the hadronic energy scale and resolution, the selection

TABLE I. Summary of the measurement of the pT dis-
tribution of the W boson. The nominal pWT is where the
predicted function equals its mean value over the bin. The
quantity d�(W ! e�)=dpWT corresponds to the di�erential
cross section in each bin of pWT for W ! e� production. Sys-
tematic uncertainties do not include an overall 4:4% normal-
ization uncertainty in integrated luminosity.

Statistical Systematic
pWT pWT bin d�

dpWT

(W!e�)

uncertainty uncertainty

GeV=c GeV=c pb/(GeV=c) pb/(GeV=c) pb/(GeV=c)

0.92 0{2 109.37 � 4.60 � 10.64
3.40 2{4 205.91 � 6.84 � 22.80
4.97 4{6 171.28 � 5.64 � 9.16
6.98 6{8 133.62 � 4.65 � 9.81
8.98 8{10 103.30 � 4.03 � 7.17
10.98 10{12 77.58 � 3.47 � 7.15
12.98 12{14 63.66 � 3.21 � 4.18
14.98 14{16 47.88 � 2.77 � 4.03
16.98 16{18 37.72 � 2.43 � 2.50
18.98 18{20 30.65 � 2.21 � 1.60
22.40 20{25 22.02 � 1.23 � 1.11
27.41 25{30 13.94 � 0.93 � 0.98
32.42 30{35 9.47 � 0.73 � 0.79
37.42 35{40 6.84 � 0.63 � 0.52
44.70 40{50 3.95 � 0.36 � 0.31
54.72 50{60 1.81 � 0.24 � 0.23
64.77 60{70 1.15 � 0.21 � 0.25
74.79 70{80 0.75 � 0.18 � 0.21
89.21 80{100 0.313 � 0.059 � 0.091
109.27 100{120 0.084 � 0.029 � 0.018
137.40 120{160 0.044 � 0.012 � 0.014
177.64 160{200 0.0077 � 0.0054 � 0.0045

e�ciency, and the background (in the high pW
T

region).
An additional normalization uncertainty of �4:4% from
the integrated luminosity is not included in any of the
plots nor in the table. The data are normalized to the
measured W ! e� cross section (2310 pb [13]). The
points are plotted at the values of pW

T
where the pre-

dicted function equals its mean over the bin [20].
Figure 2 shows a comparison of the di�erential cross

section forW boson production, assuming B(W ! e�) =
0:111, to the �xed-order perturbative calculation and
to three di�erent resummation calculations in the low
pW
T

region. The parametrizations of the nonperturba-
tive region are from Arnold-Kau�man [5] and Ladinsky-
Yuan [6] in b-space, and Ellis-Veseli [7] in pT -space. The
disagreement between the data and the �xed-order pre-
diction at low values of pW

T
con�rms the presence of con-

tributions from soft gluon emission, which are accounted
for in the resummation formalisms. The fractional di�er-
ences (Data�Theory)=Theory are also shown in Fig. 2 for
each of the three resummation predictions. Although the
�2 for the Ellis-Veseli and Arnold-Kau�man prescriptions
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FIG. 1. Di�erential cross section for W ! e� production.
The solid line is the theoretical prediction of Ref. [6]. Data
points show only statistical uncertainties. The fractional sys-
tematic uncertainty, shown as the band in the lower plot, does
not include an overall 4:4% normalization uncertainty in in-
tegrated luminosity.

are not as good as for Ladinsky-Yuan, the exibility in
parameter space and in the form of the nonperturbative
function in all three resummed models is such that a good
description of our measurement can be achieved [18,21].
Figure 3 shows the di�erential cross section for W bo-

son production in the intermediate and high pW
T

regions.
The calculation by Ladinsky-Yuan [6] speci�es a match-
ing prescription which provides a smooth transition be-
tween the resummed and the �xed-order perturbative re-
sults to O(�2s). The pT -space result by Ellis-Veseli [7]
contains only theO(�s) �nite part and anO(�2s) Sudakov
form factor. Hence, there is still a residual unmatched
higher-order e�ect present in d�=dpW

T
in the large pW

T
re-

gion, where the cancellation of the di�erent parts is quite
delicate. The b-space prediction by Arnold-Kau�man [5]
uses the matched result below pW

T
= 50 GeV=c and the

pure conventional perturbative O(�2
s
) result above. We

observe good agreement with the theoretical predictions
for intermediate and high values of pW

T
, which probes

e�ects of �xed-order QCD.
In summary, we have used data taken with the D�

detector in p�p collisions at
p
s = 1:8 TeV to measure the

cross section forW ! e� events as a function of pW
T
. The

combined QCD perturbative and resummed predictions
are in agreement with the fully corrected pT spectrum
of W boson production in the kinematic range of the
measurement.
We thank the sta�s at Fermilab and collaborating in-
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